
An Improved Memetic Algorithm with Method Dependence Relations (MAMDR)

Ali Aburas

Oregon State University

aburasa@onid.orst.edu

Alex Groce

Oregon State University

agroce@gmail.com

ABSTRACT

Search-based approaches are successfully used for generating

unit tests for object-oriented programs in Java. However, these

approaches may struggle to generate sequence method calls with

specific values to achieve high coverage due to the large size of the

search space. This paper proposes a memetic algorithm (MA)

approach in which static analysis is used to identify method

dependence relations (MDR) based on the field access. This

method dependence information is employed for reducing the

search space and used to guide the search towards regions that lead

to full (or at least high) structural coverage.

Our approach, MAMDR, combines both a genetic algorithm

(GA) and Hill Climbing (HC) to generate test data for Java

programs. The former is used to produce test cases that maximize

the branch coverage of the CUT, while minimizing the length of

each test case. The latter is used to target uncovered branches in the

preceding search phase using static information that guides the

search to generate sequences of method calls and values that could

cover target branches. We compare MAMDR with pure random

testing, a well-known search based approach (EvoSuite), and a

simple MA on several open source projects and classes, and show

that the combination of MA and MDR is effective.

Keywords

Search Based Software Testing, Memetic Algorithms, Static

Analysis, Search Space Reduction, Object-Oriented.

1. INTRODUCTION

Achieving high coverage in object-oriented programs like Java

is a very challenging and expensive task. Creating a unit test to

achieve a high structural coverage, e.g. branch coverage, of a class

under test (CUT) requires a desirable sequence of method calls that

create and put objects into particular states. These objects can be

used as the receiver or arguments of the method(s) under test

(MUT). When automatically performing unit test generation, the

primary goal is to ensure that all, or at least a large number of the

control statements in the CUT are executed, which gains

confidence in the CUT’s quality and functionality.

There are many automated test generation approaches,

including random testing, symbolic execution-based, and search-

based approaches. Random testing approaches [11, 29] are easy to

implement, applicable, and the fastest in execution [42]. Despite

the advantages that random testing provides, it is still considered

weak for achieving high structural coverage. The main reason for

low coverage is that random testing faces a challenge in producing

a sequence of method calls with specific arguments for complex

programs. Approaches based on symbolic executions (e.g., KLEE

[10]) explore path conditions in the program under test and collect

constraints on all inputs from the branch statements. If the collected

constraints are feasible, then a constraint solver is used to generate

input from them. However, these approaches face a challenge of

scalability if the program under test is complex. Search-based test

generation approaches (e.g., EvoSuite [13]) have already been

shown to be effective for generating test data that achieves high

code coverage and reveals failures [8, 13]. The search-based

approaches consider more than one solution at the same time. They

employ meta-heuristic optimization techniques, such as Genetic

Algorithms, and use a fitness function that guides the search toward

better solutions. However, in particular circumstances, these

approaches face challenges which negatively affect their ability to

achieve high structural coverage for certain programs. When we

have a large number of methods to test, each of which can take

some parameters as inputs, then finding the potential methods calls

to optimize the solutions can be a challenge due to the large size of

the search space [6, 16]. In addition, the efficiency of the search-

based approaches decreases as well for programs that have

predicates using string constants. In this case, no heuristic can be

defined to guide the search, since the fitness function landscape

contains plateaus [6, 28].

One potential way to alleviate these problems, and improve the

effectiveness of the search-based approaches is to use static

analysis and exploit the program under test to guide search-based

test generation. This was the main motivation for this work: we

focus on developing a search-based approach which generates test

inputs for object-oriented programs and utilizes the source code of

the program under test to overcome the aforementioned challenges.

This paper presents an automated search-based technique that

uses dependence relations among the MUT based on the fields they

access [42]. The goal of this technique is to guide the search to look

in the most promising regions of the search space by eliminating

irrelevant method calls without reducing the search effectiveness.

Fraser and Arcuri [14] conducted a study on 20 Java projects,

concluding that the use of seeding can strongly improve

performance of an evolutionary search. Consequently, we introduce

seeding that uses constants provided by the source code of the

program under test to help the search cover certain branches that

are dependent on particular values.

The main contributions of this paper are the following:

1. We introduce a search-based approach to automatic test

generation based on memetic algorithms. We extend global

search (Genetic Algorithm) with a local search (Hill

Climbing).

2. We introduce a technique to reduce the search space for

object oriented programs, based on method dependence

relations [42].

3. We also introduce a way to seed constants into the search

process when targeting uncovered branches.

4. We present the results of an empirical study on 4 popular

open source programs and 6 Java classes. Some of these

classes are taken from recent experiments where search-

based approaches, like EvoSuite, struggled with challenges

in achieving high coverage. The results show the

effectiveness and impact of our approach.

This paper is organized as follows. Section 2 introduces the

concept of our approach with an illustrative example. Section 3

provides background information, and related work is reviewed in

Section 4. Section 5, describes in details our approach. Section 6

discusses the evaluation setup of the empirical study. Section 7 the

results of the evaluations of the approach are presented and

discussed. Threats of validity are analyzed in Section 8. Finally,

conclusions and future work in Section 9.

2. MOTIVATING EXAMPLE

In this section, we illustrate some of the issues involved the

search process, through an illustrative example taken from the

NanoXML1 [16] project, shown in Figure 1.

Figure 1 shows one class under test (CUT), CDATAReader,

and we consider a method read as a method under test (MUT),

which returns the number of characters read, or -1 if at EOF. For

simplicity, we did not show constructors of the class

StdXMLReader.

Creating the desired object states of the receiver or arguments

of a MUT is required to achieve full or at least high coverage in the

MUT. For example, creating a CDATAReader object of the

method under test involves the creation of non-primitive

parameters at line 5. Therefore, the CDATAReader object and the

parameter StdXMLReader (a concrete implementation of the

interface class IXMLReader) object must be in desired states to

cover particular branches. Moreover, the read method contains

some branches that require a particular character value, such as ‘]’,

at line 18. If the size of the test cluster consists of a large number of

classes and public methods, the search will struggle to randomly

pick the right methods and arguments as candidates that help to

cover the required branches. In fact, some branches predicates

involve a Boolean value, such as B3 at line 19, i.e. the flag problem

[28]. As a result, no heuristic can be defined that gives guidance on

how to cover the target branch B3. In such cases, the search space

will have large plateaus and the search will likely degenerate to

pure randomness, since no information can be exploited to guide

the search on how to change the flow of the execution [28].

1. class CDATAReader extends Reader {

2. private IXMLReader reader;

3. private char savedChar;

4. private boolean atEndOfData;

5. CDATAReader(IXMLReader reader){

6. this.reader = reader;

7. this.savedChar = 0;

8. this.atEndOfData = false;

9. }

10. public int read(…)throws IOException {
11. …
12. while (…) {
13. Char ch =this.savedChar;
14. if (ch == 0)
15. ch = this.reader.read();//B1
16. Else
17. this.savedChar = 0; //B2
18. if (ch == ']') {
19. char ch2 = this.reader.read(); //B3
20. if (ch2 == ']')
21. … more if statements …
22. }
23. }…
24. }
25. … 3 more methods …
26. }
27. public class StdXMLReader implements IXMLReader{
28. …
29. public static IXMLReader stringReader(String str){
30. return new StdXMLReader(new StringReader(str));
31. }
32. … 20 more methods …
33. }

Figure 1: Two classes taken from the NanoXML project.

1 http://nanoxml.sourceforge.net/orig/

Searching through regions of the search space that do not

produce a desired object state will increase the number of fitness

function evaluations without any gain in covering useful code [6].

As revealed by our experimental results in section 6, pure random

testing, a search-based approach (EvoSuite), and a simple MA [6,

8] could achieve 69%, 68% and 77% branch coverage of the

CDATAReader class, respectively.

Our approach intelligently reduces and navigates the search

space and recommends candidate methods or constructors that help

to cover a target branch. The space search reduction approach used

in this paper is based on the concept of Method Dependence

Relations (MDR) [42]. We use static analysis to analyze a target

branch predicate and identify the relevant member fields and/or

parameters of MUT which will be responsible for covering the

target branch. Removing irrelevant inputs can improve search

performance. Furthermore, constant primitive values (e.g. numbers

or strings) are extracted from target branches, and preferred over

randomly generating new values.

MAMDR uses two phases of static analysis to identify relations

between methods. In the first phase, it statically identifies method

dependence relations based on the read and written fields and then

recommends all the public methods and constructors that write a

particular field. In the second phase, the signatures of each

recommended public method and constructor are analyzed;

afterwards, all constructors that create instances and methods that

return the same data type of the non-primitive parameters are added

to the recommended list. For example, consider covering branch B3

at line 19 (Figure 1). A necessary requirement to cover branch B3

is that non-primitive field reader must contain character value

‘]’. Consequently, MAMDR recommends the constructor of

CDATAReader that writes the field reader. Then, MAMDR

also recommends both the class constructor of StdXMLReader,

and method stringReader at line 27, because they both return

instances that can be used to replace the interface class type

argument in the CDATAReader constructor. Finally, MAMDR

uses the character constant ‘]’ to initialize the inputs of the

arguments instead of randomly initializing them. For instance, if

MAMDR picks the method stringReader to invoke, then the

parameter of string type at line 27 is initiated with the character

value ‘]’. This combined MDR and branch predicates constants

extraction information allows MAMDR to generate more effective

sequences of method calls that cover branches that require specific

input values. Our results show that MAMDR achieves 96% branch

coverage of the CDATAReader, which is 27% higher than pure

random testing, 28% higher than EvoSuite and 19% higher than a

simple MA.

3. BACKGROUND

In this section we describe some Search-Based Software

Testing (SBST) algorithms that have been applied in software test

data generation.

3.1 Evolutionary Algorithms

Evolutionary algorithms [28] are based on the idea of genetics

and evolution in which new and fitter sets of candidate solutions,

which are often called individuals or chromosomes, are created by

combining portions of fittest candidate solutions. Genetic

Algorithms (GA) are probably the most common technique in

Evolutionary Algorithms [28]. GA starts with a random initial

population of individuals. Then, the algorithm enters evolutionary

iterations with the following order: First, each individual is

executed and its fitness is computed. Second, individuals based on

their fitness are selected. Then, a recombination operator is applied

by taking two parent individuals and producing two new offspring.

After recombination, a mutation is applied, which produces small

random changes to the offspring. Finally, these new offspring fill

the population of the next generation. The evolution is performed

until a termination criterion is met, for example time budget or

number of generations. To avoid the possible loss of the fittest

individuals (elitism), the new population is always initialized with a

number of best individuals without any modification.

The individual length, population size, and the crossover and

mutation probabilities values in GA are referred to as GA

parameters. In addition, selection, crossover, and mutation are

referred to as GA operators.

There is also a subset of genetic algorithms [31], called Genetic

Programming (GP), and sharing many characteristics with GA,

such as the operators of selection, reproduction, and mutation.

However, the difference between the two is the representation of

the individuals: in GP the individual is normally represented as a

tree-structure.

3.2 Local Search Algorithms

In contrast to GA, local search algorithms aim to improve one

individual by exploring its neighbors [28]. Hill Climbing (HC) is a

well known local search algorithm. It usually starts with a random

individual, and then it considers the set of near neighbors to this

individual. If a fitter neighbor is found, HC moves to it and again it

investigates its neighbors. If HC gets trapped in a local optimum,

which there is no better neighbor is found, it randomly restarts from

a new individual.

3.3 Alternating Variable Method (AVM)

The Alternating Variable Method (AVM) is a similar technique

to HC, and developed by Korel [26]. AVM tries to optimize each

input variable in isolation. The chosen variable is randomly

modified by increasing or decreasing a small amount, which is

called an exploratory move. If the changes affect the fitness

function, AVM applies a large amount in the same direction, which

is called pattern moves. The pattern search is applied in the same

direction as long as the fitness function is improved. The pattern

search ends when it fails to optimize the fitness function. In this

case, the search goes back to the exploratory moves to indicate a

new direction on the same input variable. Once there are no further

improvements of the input variable, the search moves to consider

another variable, repeating the same process, until the branch is

covered or no more variables can be improved.

3.4 Memetic Algorithms

Memetic algorithms (MA) combine both evolutionary

algorithms and local search algorithms (e.g., a GA with a HC). In

this case, MA implements a GA; additionally, at each generation,

on each individual, a HC is applied to improve its fitness and reach

a local optimum. MAs have been successfully applied to testing

and showed better performance than evolutionary algorithms and

local search algorithms in some cases [6, 8, 16].

4. RELATED WORK

In this section, we discuss the most closely related SBST

approaches. In additions, the impact of the search space reduction

on the performance of testing object oriented programs is explored.

4.1 Search-Based Unit Testing

Evolutionary Algorithms have already been applied to the

problem of automated test data generation and have shown

significant success. Tonella [36] applied GA to generate test cases

for Java programs, and presented eToc tool for the Evolutionary

Testing of Object Oriented (OO) software. In this approach, a

population of individuals represents the test cases. New test cases

were generated when a new branch is targeted. The fitness function

is used to count the number of control dependences covered during

test execution. One of the problems faced in separately tackling

each branch, which is called the structure-oriented approach [28],

is that when an uncovered branch is chosen as a target branch, the

predicate of that branch might not be executed by any of the test

cases in the population. In addition, no guidance is provided to the

search on how to enter nested branches and cover them [28].

Several works addressed the issue of the structure-oriented

approach and proposed fitness functions to guide the search

process [3, 7, 27, 38]. Mainly, the fitness function combined two

kinds of information: the approach level and the branch distance.

The first is used to show how many of the conditional statements

were not executed by a particular input to reach the target branch.

The second computes the difference between a predicate value and

a data input to execute the branch that leads to the target branch.

The branch distance involves only numbers. As a result, if a

predicate contains Boolean values, then it has only two different

outcomes. This problem is called the flag problem [28]. In this

case, several techniques were proposed for handling flag problems,

for example testability transformations [21], and the chaining

approach [12].

Arcuri and Yao [6] applied and analyzed different search

algorithms on the testing of Java container classes. HC with

random restarts, GA and MA were used and compared. Their

empirical results showed that the MA results were the best among

the algorithms. Moreover, a more advanced fitness function was

proposed that maximize the number of branches and minimize the

length of test cases.

EvoSuite [13] automatically generates and optimizes whole test

suites towards satisfying a coverage criterion, e.g. branch coverage.

EvoSuite uses GA that evolves and optimizes whole test suites to

alleviate the problem that derive from infeasibility and difficulty of

individual coverage goals. Recently, the GA search in the EvoSuite

has been combined with local search (AVM) to optimize the values

in a specific test case of a test suite [16]. Their result showed that

the combined techniques increased the branch coverage by up 32%

over GA.

Barsei et al. [8] proposed a hybrid global-local search (MA)

tool for Java classes called TestFul. Their approach combines GA

and HC, to generate tests that exercise the maximum number

branches on the CUT. The former is used to search for the test that

has higher coverage and reach all the interesting internal states of

the CUT. The latter is used to target uncovered branches and

analyze the controlled conditions of those branches to pick that

ones are involved with numbers to cover. Our approach uses an

algorithm that is derived from [6, 8] but which additionally

incorporates a constant seeding strategy and uses method

dependency relations (MDR).

4.2 Search Space Reduction

The goal of search-based algorithms for testing OO software is

not only to generate test cases that instantiate the CUT followed by

calling a sequence of method calls, but also to generate the

desirable constructor parameters and the right method arguments.

The large search space of distinct method numbers and parameter

values can possibly hinder the search process. Thus, search space

reduction deals with the elimination of the irrelevant methods and

variable inputs from the input domain of the CUT, thereby reducing

the size of the search space, which could potentially enhance the

search process [31]. In spite of the large body of work on search-

based software testing (SBST), there has been little investigation

that addresses the relationship between search space and

performance of search-based algorithms.

Harman et al. [20] were the first to empirically explore the

search space reduction for the SBST. Their study analyzes the

relationship between removing irrelevant input variables and SBST

algorithms, including GA, HC and MA. In their work, static

analysis was used to remove input variables that are irrelevant for

determining whether a target branch will be executed or not,

thereby reducing the search space. Their empirical study showed

that irrelevant input removal improved the performance of the

aforementioned SBST algorithms. However, the study focused on

procedural programs and primitive parameters values. In a separate

study, Binkley and Harman [9] conducted a simple experiment to

show how the analysis of a predicate’s dependence on parameters

of a procedure can be used to reduce test data generation effort in

evolutionary testing. Their initial results showed that the

combination of analysis of predicate dependency with the

optimized search required fewer fitness evaluations.

More recently, some researchers have addressed the issue of

reducing the input domain of OO test data generation problems.

Arcuri and Yao [6] proposed a technique called Dynamic Search

Space Reduction (DSSR) that can be applied to any type of OO

software. Their technique dynamically eliminates the read-only

methods that do not change the state of the object from the search

space. However, the study focused on a simple subset of Java

programs, containers. As a result, a database for the common

method names (e.g. insert, add, push) was used with string

matching algorithms to determine whether a method is a read-only

method or not. The empirical results showed that DSSR usage

improved the efficiency of the search algorithms, particularly HC

search, in terms of speed and number of steps to reach a global

optimum, but applicability to non-containers was unclear. Some

studies have suggested that containers have quite different behavior

than more general code [19].

Barsei et al. [8] also proposed a semi-automated approach to

augment the efficiency and speed-up the test generation with the

TestFul tool. This is achieved by requiring the user to provide data

regarding the effects of each method. A method can be: (1) a

mutator, when it may change the object’s state; (2) a worker, when

it does not change the object’s state but it may perform some

computations, or (3) an observer, when it does not change the

object’s state and does not perform any additional computation.

TestFul exploits the information and prunes methods from the test

case that have no impact on the targeted branch before starting the

HC search.

 lcianu and inard [32] described a purity analysis technique

for Java programs. Purity analysis is able to identify pure methods

that have no side effects when executed, and can also recognize

read-only and safe parameters even when the method is not pure. A

parameter is read-only if the method does not mutate it and a safe

parameter if it is read-only and the method does not produce any

new externally visible heap paths to the objects reachable from

these parameters.

EvoTest [33] and eCrash [31] approaches leverage purity

analysis to reduce the input space of OO programming. The usage

of the technique almost doubles the coverage/time performance of

EvoTest. However, the user of the tool manually adds the “pure”

annotation to complement the information generated automatically.

On the other hand, the eCrash approach involves representing and

evolving test cases using the Strongly-Typed Genetic Programming

technique. The Extended Method Call Dependence Graph

(EMCDG) is employed for constructing a method call sequence

that puts the CUT into specific states. Then, parameter purity

analysis is performed on the parameters of the method under test

(MUT) and the purified EMCDG is obtained by removing the

edges representing safe and read-only parameters from the

EMCDG. Based on their empirical results, the inclusion of a

parameter purity analysis phase into the process of test data

generation has a significant improvement in the number of

generation and computational time. Harman et al. [22] also

proposed a domain reduction technique to exclude irrelevant

parameters in the search space for aspect-oriented programs. They

performed backward slicing to identify such irrelevant parameters

[39]. The slice criterion is the predicate of a target aspectual

branch, and the resulting program slice is used to exclude irrelevant

parameters of target methods. Despite the fact that defined public

fields were not considered in their domain reduction, their results

showed a decrease in test effort with reduction, and an increase in

the number of branches covered.

All approaches mentioned followed an approach similar to

ours, but omit one or two pieces of information that are provided by

our static analysis technique. Our static analysis provides

information can be very helpful to reduce the search space and

guide the search to create both values and sequences of method

calls to exercise features that have impact on a target branch.

Regarding the reduction of the search space based on member

class fields, we are aware of the work of Thummalapenta et al.

[35]. In that work, the Seeker tool combines both dynamic

symbolic execution (DSE) and static analysis. However, static

analysis used in MAMDR differs completely from the static

analysis used in their approach. Their approach uses method-call

graphs while MAMDR uses Method Dependency Relations [42].

5. PROPOSED APPROACH

In this section, the concepts of our search-based approach are

presented. Figure 2 illustrates MADMA’s architecture.

The original source code is instrumented at bytecode level to

measure the coverage values and calculate the fitness functions. In

our experiments, we used Soot [40] for analyzing and

instrumenting Java bytecode. The static analysis is used to identify

method dependency relations based on the set of the fields that may

be read or written by each method [42] and collect specific

primitive values from predicates. The results are stored in a

repository and used later by HC search. Then, GA is used to

produce test cases that maximize the branch coverage of the CUT

while minimizing the length of each test case. Finally, HC search

attempts to cover every uncovered branch in the preceding search

phase but exploits MDR to generate sequences of related method

calls and initializes values using constants collected from the

source code that would cover the target branches.

Figure 2: MADMR tool architecture

5.1 Method Dependency Relations

Zhang et al. [42] have introduced a systematic Method

Dependence Relations (MDR) approach based on a hypothesis that

two methods have dependence relations if the fields they read or

write overlap. Their approach statically computes two types of

dependence relations: write-read and read-read.

JUnit Tests

Search Based

Tester

GA

HC
Static

analysis data

Static Analysis

Method

Dependency

Analysis

Analysis

predicates

Instrumented

Code

Class

under

test

(CUT)

Instrumenter

write-read relation: Given two methods and ; reads field

 and g writes it, it is declared that f has write-read dependence

relation on g.

read-read relation: If methods f and g both read the same field ,

each method has a read-read dependence relation on the other.

More interestingly, their approach is able to define and merge

the effects of the method calls: if a callee is a private method, it

recursively merges its access field set into its callers. This helps

reduce the search space size by only considering public methods

that lead to executing targeted private methods.

In most cases, methods require instances of other classes to be

used as arguments. To deal with that, we analyze the signatures of

each public method and identify whether two methods have a

possible dependence in terms of accessed data, (i.e. accessed-data

relation) [41].

accessed-data relation: If a method returns a non-primitive type

and method uses it as an a argument, it is declared that has

accessed-data dependence relation on .

MDR is useful for testing two write-read related methods, as it

has a high chance of exploring new program behaviors and states

[42]. In addition, it is especially useful in the context of SBST, as

the input domain of OO programs can be reduced by automatically

identifying and eliminating read-read related methods that cannot

give any further help from the search problem. In addition, MDR

can also identify candidate methods that modify a specific member

class field [6].

5.2 Genetic Algorithm

For an algorithm to be considered genetic, we need to define a

representation of test cases as individuals, a fitness function, and

the genetic operations.

A. Individual representation: An individual can be viewed as a

sequence of functions calls. In this paper, we decided to use an

individual representation similar to [8, 13], because it is easy to

apply and manipulate. Each individual consists of a set of

statements that are either a constructor or method call:

a. Constructor statement: represents a constructor call to generate

a new instance of a selected class, e.g. CDATAReader

CDATAReader_0= new CDATAReader

(StdXMLReader_0).

b. Method statement: represents a public method call, e.g.

CDATAReader_0.read(charArry_0,10,20). Parameters of

constructors and method classes can be randomly generated

and initialized depends on their types.

For a given CUT, the test cluster [37] is automatically defined.

This is done by performing a static analysis of all the signatures of

the public methods and constructors of the CUT, and adding each

type encountered to the cluster. Returned non primitive objects are

stored in a pool and served as a target object or parameter object for

succeeding statement calls.

B. Fitness Function: GA uses fitness functions to determine if an

individual is to be selected for reproducing in the subsequent

generations. In this work, individual fitness is based on branch

coverage, branch distance, and the length of the individual. In the

GA search our goal is reaching the maximum number of covered

branches while minimizing the length individuals [6, 8]. Thus, we

use the fitness function in equation (1) to guide the GA search, and

it is combined two objectives in a single function [6]:

 (1)

While branch distance often gives good results, it can deceive

the search and lead to longer individuals without increasing the

coverage, which is called bloat [15]. As a result, we omit the

branch distance in equation (1). This is because at the end of the

search, we are only seeking to achieve high coverage with short

length individuals [6].

C. Genetic Operations: in this work, common genetic operators

are implemented:

a. Selection: In this operation two parents are selected for

reproductions. We implement tournament selection [28]. In

this selection mechanism, two individuals are randomly

selected. Then, a random number is generated .

Finally, we select the better individual if is less than
 , otherwise the less fit individual is selected.

b. Crossover: this operator produces new individuals from the

selected individuals. There are many different ways to

implement crossover, such as single or multiple crossover

points. We implement a single crossover point, where the two

selected individuals are cut at a random single point.

c. Mutation: After crossover, the individuals are subjected to

mutation. We randomly apply one of the following operations

with probability :

- Remove: A random number is generated, where
 , and r statements are removed from the individual at

any random position in the individual.

- Insert: A random number is generated, where
 , and r statements are added to the individual at any

random position in the individual. The input parameters for

the statements are randomly generated

- Change: A random number is generated, where
 , and r statements have their parameters replaced with

randomly selected values.

d. Elitism: At each new generation, the 10% of the population that

have high fitness values are directly copied to the next new

generation without any modification.

5.3 Hill Climbing

When the GA results stagnate, we employ hill climbing (HC)

as the local search, similar to [6, 8]. For each branch uncovered in

the GA, the individual that achieved best fitness for each reached

branch is stored and used as a starting point for HC. Thus, the input

of the HC is a list of all uncovered branches and the fittest

individual for each branch. Every branch in the provided list is then

processed in an attempt to cover it.

A branch is reached if its predicates are executed, while a

branch is covered if its predicates are evaluated as true or false. An

individual that reaches a branch is mutated and executed until the

branch is covered or the stopping criterion is met, for example

number of attempts. At each execution of the mutated individual,

we keep track of new covered and reached branches and

accordingly update the test suite.

A. Fitness Function: The fitness function that guides HC is similar

to that which was used by Arcuri and Yao [6]. We apply the branch

distance (BD) in the HC search because we target a single branch at

a time and focus on the predicates of the target branch.

Consequently, we use equation (2) for measuring BD.

 (2)

Where is a normalizing function, and we use the

normalization function [3]: , and shows how far a

predicate is from obtaining its opposite value. For instance, for

predicate when the value of is 2, then the distance to the

false branch is [13]. Finally, we integrate BD with the

total branches coverage of the individual to guide the HC search in

the following way:

 (3)

HC uses equation (3) as a fitness function to compare between

the current and the mutated individual. However, if the two

individuals have the same fitness, HC always picks the shortest

individual [6].

Our approach explores the large space to generate candidate

methods as well as specific constant values that help to cover target

branches. Consequently, we analyze the targeted branch’s

predicates and precisely identify the type of elements that are

involved in executing of the branch, e.g. member field, parameter

method, or/and constant values. Then, we recommend methods

and/or constant values for the following types of elements being

involved in the condition’s target branch:

a. Member field: To deal with class member fields, we followed a

similar approach to the ones used by Thummalapenta et al.

[35]. We precisely identify a member field and also leverage

MDR to identify the related methods that write the targeted

member field and help to achieve a desired value. If the target

branch belongs to a non-public method, i.e. private, we also

leverage MDR to identify all the public methods that call the

targeted private method and recommend the identified related

methods list to HC.

b. Parameter of method: We identify a parameter of method and

also determine the type of the parameter, as well as the type

of the method either public or private. Then, we also leverage

MDR to identify the methods that call and/or have write-read

relation with the targeted method. However, in some

instances, it is impossible to reduce search space based on the

parameters, because all parameters of a method can be

involved in deciding whether a target branch is covered [20].

In spite of that, Harman et al. [20] showed that HC increases

its search performance by removing irrelevant input

variables:

c. Primitive Values: Rather than using random values, we apply a

similar approach to that of Alshahwan et al. [1]. First, we

collect constants from the target branch predicates. Then, we

make a few changes to the constants and based on their types

as inputs to the recommended related methods parameters

these are used as input. Finally, with a certain probability we

apply the following modifications based on the type of the

constant:

- Integer and Long: We add/subtract a random number

to the constant value, with .

- Float and Double: We add/subtract a random number

to the constant value, with .

- Boolean: We only flip the value either true or false.

- Character: We randomly replace the value with another

character.

- Strings: We apply one of three mutation operators as in

[2]. (1) deletes the constant from the string value of the

parameter methods in the individual. (2) inserts the

constant in a random place into the string values of the

parameter methods in the individual. (3) replaces the

constant value with the parameter targeted method in the

individual.

d. Array Values: We first leverage our static analysis information

to determine the exact index for which an assignment helps

to cover the target branch. Then, on the assignment of the

index , we generate input values depending on the

component type of the array. We also use constant extracted

from target branch predicates as input, rather than a random

value.

Finally, we apply three different mutation operations to

produce a modified version of the individual [6, 8]:

1- Insertion: Insert a random number , where of

methods that are randomly chosen from the identified related

methods list in a random position in the individual.

2- Deletion: Remove a random number , where of

chosen methods from the identified related methods list from

the individual, as well as remove all the methods that do not

exist in the list.

3- Change: Change the parameters of a random number , where

 of chosen methods or constructors in the

individual with the modified constant.

Finally, the modified individual is then executed to see if the

target branch is covered or if the fitness function is improved. In

the former, the new individual is returned and is added to GA

population and replaced with the least fit of an individual in the

current population. In the latter, the fitter individual will be selected

as a new starting point. HC repeats the aforementioned mutation

operations until the attempt limit is reached. In this case, HC selects

another uncovered branch, along with the individual that reaches

the branch and tries to cover it.

6. EVALUATION

To validate our approach described in this paper, we compared

its effectiveness against three different approaches: pure random

testing, the EvoSuite [13] tool as a representative for search-based

approaches, and a simple MA. EvoSuite is fully automatic and

performs some code transformations to allow optimizations of

string values. On the other hand, random testing (RT) has been

recognized as an effective and fast testing technique, in which test

cases consist of randomly selected methods with inputs randomly

chosen from the input domain. Thus, to analyze the performance of

random testing and MAMDR, we followed a random test

generation strategy proposed by Ciupa et al. [11]. In addition, we

compared a simple MA without method dependency relation

(MDR) with our approach to show the effectiveness of our search

space reduction approach in test data generation. MA uses both GA

and HC [6, 8]. Unlike MAMDR, MA applies a simple HC to

modify an individual. When HC targets an uncovered branch, it

randomly performs one of the following actions: adding methods

from the test cluster, removing statements, or changing the

parameters of statements of the individual.

 It would be very valuable to compare our approach

performance with TestFul [8] and Seeker [35]. We could not use

Seeker in our evaluation because it targets .Net programs,

particularly C#, whereas MAMDR targets Java programs. In

addition, TestFul is semi-automatic and it requires the user to

provide some XML description of the CUT to enhance the

efficiency of the approach. TestFul also requires the user to

manually add additional classes which can be used as concrete

implementations of the abstract classes and interfaces [8]. The large

number of classes that we use in our experiments makes it harder to

compare MAMDR with TestFul.

To evaluate MAMDR we consider several types of programs.

We chose 4 open-source Java programs as used in the EvoSuite

experiments [16]. We also included DateTimeFormat and Fraction

classes where search-based approaches, like EvoSuite, did not

achieve high coverage. However, not all classes contain numeric or

string constants nor predicates, which are easy to analyze.

Therefore, this set of subjects contains three container classes,

which are taken from the work of Sharma et al. [34], to see whether

our approach has a negative effect on the performance of the search

process when its power is not needed. Table 1 lists our evaluation

subjects, including their number of public classes, lines of code2,

and number of instrumented branches.
Case Study # Classes LOC #Branches

Commons CLI [8] 11 667 288

Commons Codec [8] 26 2650 1371

NanoXML [8] 12 1532 591

org.jdom2 [8] 20 2869 1108

org.joda.time.format.DateTimeFormat [8] 1 365 145

Fraction [4] 1 252 140

StringTokenizer [28] 1 122 72

AvlTree [29] 1 306 148

BinomialHeap [29] 1 185 62

TreeMap [29] 1 481 158

Table 1: Case Study Subjects

6.1 Research Questions

Having defined the case study subjects, we now address the

following research questions:

RQ1: Does MAMDR achieve higher branch coverage than

representative test generation tools?

To answer this question, we ran RT, EvoSuite, MA, and MAMDR

on each target subject with a time limit. The original source code of

each subject was instrumented to measure the branch coverage of

each approach.

RQ2: What is the impact of using constants from target

branches predicates for seeding?

For this question, we first ran two different versions of MAMDR,

one version seeds the search process with the constant values

(denoted as MWS), and the other version without seeding (denoted

as MNS).

6.2 Evaluation Setup

We next describe our evaluation setup in order to answer the

preceding two research questions. Search algorithms have many

parameters to adjust; in this experiment we followed similar

settings in [6]. The GA uses the fitness function defined in equation

(1), with = 0.5. The GA also uses a single point crossover with

probability 0.8. Mutation probability of an individual is 0.9. The

population size is 100, and the length of the individual is set to 80.

Tournament with size 2 is used in the selection phase. The elitism

is set to 10% of the population size. HC uses the fitness function

defined in equation (3). We apply HC after five consecutive

generations without any further improvements in the total branch

coverage, i.e. the population of the search had stagnated. The

number of attempts for each target uncovered branch is set to 1,000

which means each uncovered branch gets at least 1,000 fitness

evaluations whenever being selected. We also considered the

constant seeding from the branch predicates with the probability

0.8.

We ran EvoSuite with default configurations, and only tuned

the running time for test generation to the required time limit. The

length of test cases in the random testing is set to 200 [18]. The

probability of creating a new instance of a chosen class rather than

using existing ones = 0.25. However, with probability 0.1, the

instance of the chosen class is set to null. For string values,

characters are chosen randomly from the set of 95 printable ASCII

characters (0x20–0x7E) [25]. All the experiments were conducted

on a machine with Intel Core 2 Quad CPU @ 2.66 GHz and 8 GB

RAM.

2 http://Javancss.codehaus.org/

To evaluate the statistical difference of our approach, we

followed the guidelines in [4]. For each approach, we set the time

limit 5 minutes, and run 30 times for different random seeds on

each test class (not per test subject program).

7. Results

This section provides a summary of the results with respect to

the research questions.

7.1 Coverage Results

Table 2 summaries the result obtained by the experiment for all

the test cases subjects. The table shows the average of the branch

coverage value over the 30 runs with different random seeds. We

highlighted in bold where the highest branch coverage is achieved

by each approach with statistical significance, respectively. The

statically difference has been calculated with Mann-Whitney U at

the 95% confidence level.

Test subject RT(%) EvoSuite(%) MA(%) MNS (%) MWS (%)

Commons CLI 96.88 95.67 96.83 96.84 99.28

Commons Codec 91.59 89.34 91.94 92.33 93.20

NanoXML 63.32 59.20 65.67 70.85 73.68

org.jdom2 82.50 80.19 80.11 82.40 86.39

DateTimeFormat 82.09 68.69 81.15 83.75 89.06

Fraction 93.52 85.45 90.36 93.10 92.93

StringTokenizer 62.50 63.89 62.5 62.50 86.62

AvlTree 95.27 70.50 95.27 95.27 95.27

BinomialHeap 90.32 88.71 93.55 93.55 93.55

TreeMap 82.91 82.91 82.91 82.91 82.91

Average: 84.09 78.46 84.03 85.35 89.93

Table 2: Average branch coverage Achieved by RT, EvoSuite, MA,

MNS, and MWS.

7.1.1 Comparison with RT

The results in table 2 show that MNS outperforms RT on 3 test

subjects in the branch coverage. Coverage levels were identical

between MNS and RT for 4 test subjects, particularly container

classes. NanoXML shows the highest improvement with a 7.53%

increase in coverage. The reason why RT achieves a lower branch

coverage than MNS can be explained by the fact that some

constructors of classes in the NanoXML require instances of other

classes and/or specific values used as arguments. For example, the

constructor of class StdXMLReader requires a Reader object

(the input for the XML data), and string values as arguments. RT,

thus, creates many invalid objects of StdXMLReader due to the

large size and complexity of the search space, and then fails to

reach desirable states that help to cover target branches. On the

other hand, static analysis used in MNS helps to identify related

methods that lead to cover branches. For instance, MNS identifies

the stringReader method, which only takes one string

argument, and returns a valid StdXMLReader object instance,

thereby reducing the search space size. Invoking stringReader

allows MNS to create many valid StdXMLReader objects that

can be used to reach many desirable states that help to cover

branches.

We also noticed that MNS showed no substantial branch

coverage improvement over RT in Common Codec and Commons

CLI, where RT previously observed to be very effective in testing

Apache Commons programs [42]. One main reason is that

Common Codec has few path constraints and its methods can be

called without any specific order to initialize objects, suggesting

MNS strength lies in testing classes that require complex input

sequences. Moreover, RT also did a little better than MNS for the

Fraction class. This can be explained by considering that the

Fraction class is immutable, which means constructors of the class

updates its member fields, and if parameters of the constructors are

not valid an exception is thrown, which hinders the search process

[8]. In our experiments, the length of RT test cases was set to 200.

http://www.geom.uiuc.edu/~daeron/docs/apidocs/java.util.StringTokenizer.html
http://www.geom.uiuc.edu/~daeron/docs/apidocs/java.util.StringTokenizer.html

That allows RT to randomly create many desirable object instances

in each test case. The capability to generate a number of valid

object instances helps RT to cover many branches of the Fraction

class. However, the static analysis used in MNS helps to identify

the constructor of the class is responsible of writing its fields. This

helps MNS to concentrate on creating a valid Fraction object

instance and avoiding throwing exceptions, and thus the search

process is improved [8].

7.1.2 Comparison with EvoSuite

Our results show that MNS achieved higher branch coverage

than EvoSuite for all subjects. Although EvoSuite creates method

call sequences with the assistance of transformed String methods

like String.equals to calculate distance measurements to the

branches [13], it fails to generate method call sequences that cover

very difficult branches. We identified two possible reasons for the

lowest branch coverage of EvoSuite. First, the measurement in the

branch distance offers little guidance to explore a large search

space and find input data to cover difficult branches. Second, when

an individual in EvoSuite is a set of test cases, each of which

consists of a sequence of method calls, then the size of the search

space is very large [16]. As a result, it is difficult for EvoSuite to

mutate a primitive value and find a desirable value input to cover a

target branch, since the probability of it being mutated during the

search is very low [16]. Thus, EvoSuite finds it hard to make

progress towards the optimal solution by only using mutation and

crossover operations. The aforementioned two reasons for branches

to remain uncover are all related to the size of the search space, a

weakness of EvoSuite observed in recent approaches [16, 17, 30].

Indeed, the exclusion of irrelevant methods from the search space

can effectively improve the performance of EvoSuite because the

mutation operator will be concentrating its effort on methods that

can influence coverage of a target branch [20].

7.1.3 Comparison with MA

Table 2 also shows the comparison results on branch coverage

achieved by MA and MNS. We can observe that MNS outperforms

MA in 5 out of 10 test subjects. In the remaining five test subjects,

MA and MNS achieve exactly the same coverage. Among these

five subjects where MA and MNS achieve the same branch

coverage is Commons CLI. Commons CLI has only a few

constraints that need to be satisfied [42]. Therefore, the majority of

Commons CLI branches are trivial and randomly picking methods

and finding their arguments across the whole search space can

achieve good results. In summary, input domain search space

reduction can cause an increase in branch coverage, particularly,

for programs that contain branches requiring specific method calls

ordering or arguments.

7.1.4 Impact of seeding constants

As might be expected, seeding improves branch coverage 7 of

10 test subjects (Table 2). Branch coverage was identical for

container classes. Noticeable improvements were obtained for

Commons Codec, Commons CLI, NanoXML, org.jdom2, and

StringTokenizer. The highest improvement with 5.31% was

recorded in DateTimeFormat test subject. In DateTimeFormat

class, most of the branch targets are contained in private methods,

and depended on a string values. Approaches like EvoSuite or RT

Commons CLI Commons Codec NanoXML Jodm.git

DateTimeFormat Fraction

StringTokenizer

AvlTree

BinomialHeap

TreeMap

Figure 3: Average Branch Coverage of each of the 5 approaches on each test subject

http://www.geom.uiuc.edu/~daeron/docs/apidocs/java.util.StringTokenizer.html

might need to run for very long time to cover these branches. MWS

can cover these target branches much quicker for two possible

reasons. First, collecting constants from predicates of the target

branches helps MWS to seed these constants into the search

process, and cover branches that depend on these specific

constants. Second, identifying related methods helps MWS to

generate sequence of method calls to a target branch with desired

values for member fields and method arguments.
Figure 3 shows a box-plot of the actual average branch

coverage achieved over 30 runs of each approach on each test

subject. As the figure shows, in many test subjects MWS achieves

higher branch coverage than other approaches. For Commons CLI,

Commons Codec, and StringTokenizer MWS shows the highest

coverage. In each case, MWS seeded valid constant string values to

the tested methods to cover specific branches which guided the

search towards additional nested branches. However, these values

are difficult to generate due to the randomized generation in each

other approach. We also notice that MWS shows identical

coverage over 30 runs compared to MNS for Fraction class. The

primary reason is that this class is a number implementation and

has methods that accept numbers, which contain few constant-using

predicates. As a result, both approaches relied on fitness function to

guide the search to generate input data that cover target branches.

Despite MWS improving branch coverage on most test

subjects, it still does not achieve 100% branch coverage. The

simple explanation is that some classes might contain branches that

are included in private methods which are not called by any public

methods [16]. In addition, some branches required complex data

inputs to be covered. For example, some methods in the

StdXMLReader class, which in the NanoXML test subject,

require a file containing XML data as input. These types of inputs

are difficult to generate, and thus MWS generates ineffective tests.

What came as a surprise is that RT outperforms EvoSuite in

most test subjects. One explanation would be that the length of the

test case for RT is 200 [18], which is three times as long as

Evo uite’s. Although it may be possible to find parameter settings

for which EvoSuite performs better, discovering parameter settings

can be considered computationally expensive [5]. For this reason,

we postpone finding better parameters to future work. We will

consider adopting different parameters settings across all different

approaches; in particular, we are concerned to adopt the same

settings on all representative approaches, such as the same length of

the test case, when the defaults of tools may not be best.

8. Threats to Validity

In this section we discuss the main threats that could affect the

validity of our results.

8.1 Internal Validity:

The major internal threat that could affect our results is the

probability of having faults in our instrumentation. To minimize

this threat, we carefully tested our instrumentation framework and

manually tested instrumented source code for several program

subjects. Another potential threat to internal validity could be with

randomized algorithms. Therefore, we ran our experiments for 30

times and applied rigorous statistical procedures.

8.2 External Validity:

The external validity is how generalizable our results are based

on our selection of test subjects. The test subjects in this

experiment were different types of programs and their size varied

by an order of magnitude. We included open source projects and

container classes. In addition, the selection test subjects have been

widely used in other empirical studies in SBST.

9. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed MAMDR, a fully automatic

tool that utilizes three different approaches: genetic algorithms, hill

climbing, and method dependence relations to achieve high code

coverage. To evaluate MAMDR, we conducted evaluations on

several open source programs and container classes. Our results

showed that MAMDR demonstrated significant improvements in

branch coverage compared to purely random testing and the search-

based EvoSuite.

With our approach, related methods, which are based on their

fields, are exploited to modify particular fields or arguments in

order to cover a branch that is required for a certain execution path.

This is particularly useful to handle a large search space and to

generate sequences of method calls for classes with complicated

constraints branches.

The individual presented concepts of our automated search-

based test generation have (in many cases) been applied in other

approaches to generate test cases for OO programs, like Java, but

the combination of methods and exploiting of all information

available is key to overall success. We showed that it can be

difficult for search-based approaches to generate test cases that

include good method sequences and arguments, due to the

application of a pure randomized algorithm in the mutation phase.

We also showed how our novel seeding approach exploited method

dependence relations to increase the effectiveness of the SBST.

In future work, we will focus on integrating method

dependence relations into the genetic algorithm phase and

enhancing its mutation operators. Further, we also plan to capture

object instances from different search phases and then exploit these

object instances to guide the search in generating test cases.

Finally, we plan to conduct further experiments and analyses on

MAMD ’s coverage and efficiency when these ideas are

implemented.

ACKNOWLEDGMENT

The authors would like to thank Tripoli University, Tripoli, Libya

for its support to Ali Aburas.

10. REFERENCES

[1] N. Alshahwan and M. Harman, “Automated web application

testing using search based software engineering,” in IEEE/ACM

Int. Conference on Automated Software Engineering (ASE), 2011,

pp. 3–12.

[2] M. Alshraideh, L. Bottaci, “ earch-based software test data

generation for string data using program-specific search operators,”

Software Testing Verification and Reliability, 16(3), 2006, pp. 175-

203.

[3] A. Arcuri, “It really does matter how you normalize the branch

distance in search-based software testing,” oftware Testing,

Verification and Reliability (STVR), 2011.

[4] A. Arcuri and L. Briand “A practical guide for using statistical

tests to assess randomized algorithms in software engineering,” in

ACM/IEEE International Conference on Software Engineering

(ICSE), 2011, pp. 1–10.

[5] A. Arcuri and G. Fraser, "Parameter tuning or default values?

An empirical investigation in search-based software engineering,"

Empirical Software Engineering, February 2013.

[6] A. Arcuri and X. Yao, “A memetic algorithm for test data

generation of object-oriented software,” in Proceedings of the IEEE

Congress on Evolutionary Computation, 2007.

[7] A. Baresel , H. Sthamer and M. chmidt ”Fitness Function

Design to Improve Evolutionary tructural Testing”, Proc. Genetic

and Evolutionary Computation Conf., pp.1329 -1336 2002

[8] L. Baresi, P. L. Lanzi, and M. Miraz, “Testful: an evolutionary

test approach for Java,” in IC T'10: Proceedings of the 3rd

International Conference on Software Testing, Verification and

Validation. IEEE Computer Society, 2010, pp. 185-194.

[9] D. Binkley and M. Harman, “Analysis and Visualization of

Predicate Dependence on Formal Parameters and Global

Variables,” IEEE Transactions on oftware Engineering, v.30

n.11, p.715-735, November 2004

[10] C. Cadar, D. Dunbar, and D. . Engler, “Klee: Unassisted and

automatic generation of high-coverage tests for complex systems

programs,” In OSDI, 2008.

[11] I. Ciupa, A. Leitner, M. Oriol, and B. Meyer, “Experimental

assessment of random testing for object-oriented software,” In

I TA ’07: Proceedings of the 2007 International symposium on

Software testing and analysis, pages 84–94, New York, NY, USA,

2007. ACM

[12] . Ferguson and B. Korel, “The chaining approach for

software test data generation,” ACM Trans. oftw. Eng. Methodol.,

vol. 5, no. 1, pp. 63–86, 1996.

[13] G. Fraser and A. Arcuri, “Whole test suite generation,” in

International Conference on Software Quality (QSIC 2011), 2011.

[14] G. Fraser and A. Arcuri, “The seed is strong: eeding

strategies in search-based software testing,” in IEEE Int.

Conference on oftware Testing, Verification and Validation

(ICST), pages 121–130, 2012.

[15] G. Fraser and A. Arcuri, “Handling test length bloat,”

Software Testing, Verification and Reliability, 2013.

[16] G. Fraser, A. Arcuri, and P. McMinn, “Test suite generation

with Memetic algorithms,” In GECCO, 2013.

[17] J. P. Galeotti, G. Fraser, and A. Arcuri, “Improving earch-

based Test uite Generation with Dynamic ymbolic Execution,”

in IEEE International Symposium on Software Reliability

Engineering (ISSRE), 2013.

[18] A. Groce, “Coverage rewarded: Test input generation via

adaptation-based programming,” In International Conference on

Automated Software Engineering, pages 380–383, 2011.

[19] A. Groce, C. Zhang, M. A. Alipour, E. Eide, Y. Chen, J.

Regehr, "Help, help, i'm being suppressed! The significance of

suppressors in software testing," issre, pp.390-399, 2013 IEEE 24th

International Symposium on Software Reliability Engineering

(ISSRE), 2013

[20] M. Harman, Y. Hassoun, K. Lakhotia, P. McMinn, and J.

Wegener, “The Impact of Input Domain Reduction on Search-

Based Test Data Generation,” in E EC/ IG OFT F E, 2007, pp.

93-101.

[21] M. Harman , L. Hu , R. Hierons , J. Wegener , H. Sthamer , A.

Baresel and M. oper “Testability Transformation”, IEEE Trans.

Software Eng., vol. 30, no. 1, pp.3 -16 2004

[22] M. Harman, F. Islam, T. Xie, and S. Wappler, "Automated test

data generation for aspect-oriented programs," in AOSD, 2009.

[23] K. Inkumsah and T. Xie, “Improving structural testing of

object-oriented programs via integrating evolutionary testing and

symbolic execute on,” in Proceedings of the 2008 23rd IEEE/ACM

International Conference on Automated Software Engineering

(A E’08). Washington, DC, U A: IEEE Computer ociety, 2008,

pp. 297–306.

[24] P. McMinn, M. Holcombe, “Hybridizing evolutionary testing

with the chaining approach,” in: Genetic and Evolutionary

Computation Conference (GECCO), 2004, pp. 1363–1374.

[25] P. McMinn, M. hahbaz, and M. tevenson, “ earch-based

test input generation for string data types using the results of web

queries,” in IEEE International Conference on oftware Testing,

Verification and Validation (ICST), 2012.

[26] B. Korel. “Automated software test data generation,” IEEE

Transactions on Software Engineering, pages 870–879, 1990.

[27] G. McGraw, C. Michael, and M. chatz. “Generating software

test data by evolution,” IEEE Transactions on oftware

Engineering, 27(12):1085-1110,2001.

[28] P. McMinn, “ earch-based software test data generation: A

survey. Software Testing, Verification and Reliability,” 14(2):105-

156, 2004.

[29] C. Pacheco, . K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-

directed random test generation,” in IC E, 2007.

[30] Y. Pavlov and G. Fraser, “ emi-automatic Search-Based Test

Generation,” in 5th International Workshop on Search-Based

 oftware Testing (B T’12) at IC T’12, 2012, pp. 777-784.

[31] J. C. B. Ribeiro, M. A. Zenha- ela, and F. F. de Vega, “Test

case evaluation and input domain reduction strategies for the

evolutionary testing of object-oriented software,” Information and

Software Technology, 2009. (In Press).

[32] A. lcianu and M. inard, “A combined pointer and purity

analysis for Java programs,” Technical eport MIT-CSAIL-TR-

949, MIT, May 2004.

[33] A. eesing and H.G. Gross, “A Genetic Programming

Approach to Automated Test Generation for Object-Oriented

 oftware,” International Transactions on ystems cience and

Applications, Vol.1, No.2, pp.127-134, 2006.

[34] R. Sharma, M. Gligoric, A. Arcuri, G. Fraser, and D. Marinov,

“Testing container classes: andom or systematic?” in

Fundamental Approaches to Software Engineering, 2011.

[35] S. Thummalapenta, T. Xie, N. Tillmann, J. de Halleux, and Z.

 u. “ ynthesizing method sequences for high-coverage testing,” In

OOPSLA, pages 189-206, 2011.

[36] P. Tonella, “Evolutionary testing of classes,” In Proceedings

of the International Symposium on Software Testing and Analysis

(ISSTA), pages 119-128, 2004.

[37] . Wappler and F. Lammermann, “Using evolutionary

algorithms for the unit testing of object-oriented software,” in

GECCO’05: Proceedings of the 2005 Conference on Genetic and

Evolutionary Computation. ACM, 2005, pp. 1053–1060.

[38] J. Wegener, A. Baresel, and H. Sthamer. “Evolutionary test

environment for automatic structural testing,” Information and

Software Technology, 43(14):841-854, 2001.

[39] M. Weiser, "Program Slicing," IEEE Trans. Software

Eng., vol. 10, no. 4, pp. 352-357, 1984.

[40] R. Vall´ee-Rai, P. Co, E. Gagnon, L. J. Hendren, P. Lam, and

V. undaresan, “ oot - a Java bytecode optimization framework,”

in CASCON, 1999, pp. 125–135.

[41] S. Zhang, Y. Bu, X. Wang, and M. D. Ernst. “Dependence-

guided random test generation. CSE 503 Course Project Report,”

University of Washington. URL:

www.cs.washington.edu/homes/szhang/gencc.pdf, May 2010.

[42] . Zhang, D. aff, Y. Bu, and M. D. Ernst, “Combined static

and dynamic automated test generation,” in I TA, 2011.

http://dl.acm.org/citation.cfm?id=1032597&CFID=524291162&CFTOKEN=85694335
http://dl.acm.org/citation.cfm?id=1032597&CFID=524291162&CFTOKEN=85694335
http://dl.acm.org/citation.cfm?id=1032597&CFID=524291162&CFTOKEN=85694335
http://dl.acm.org/citation.cfm?id=1032597&CFID=524291162&CFTOKEN=85694335

