ASCE/AISC 2015 STEEL BRIDGE TRUSSANASAUROUS REX

CENE486 - FINAL PRESENTATION

WENDY CLARK, NOEL CRUZ, SARAH HIGGINS, LAUREN STADELMEIER

PROJECT TEAM

- Noel Cruz - Project Manager/Materials Engineer
- Lauren Stadelmeier - Conference Captain/Safety Engineer
- Wendy Clark - Scheduling Engineer
- Sarah Higgins - Design Engineer

PROJECT BACKGROUND

- "A comprehensive, student-driven project experience from conception and design through fabrication, erection, and testing"
- Sponsored by:
- American Institute of Steel Construction (AISC)
- American Society of Civil Engineers (ASCE)
- Pacific Southwest ASCE Conference (PSWC)
- Model built for the country of Kuprica

PSWC 2015

PROJECT CLIENT, STAKEHOLDERS,TECHNICAL ADVISOR

Client:
Mark Lamer, P.E.

Technical Advisor:
John Tingerthal, P.E.

Stakeholders
- Citizens of Kuprica
- NAU ASCE-Student Chapter
- Mark Lamer, P.E.

PROJECT DESCRIPTION

- I:IO scale model requested to compete for contract
- Best performing model will build full-scale bridge
- Bridge to span Nogo River in Kuprica
- Field Conditions
- Organic soil conditions
- Long tropical rainy season
- Construction during dry season

Figure I:Tropical river similar to Nogo River [1]

TECHNICAL CONSTRAINTS

- Constraints Established from Rules
- Steel
- Max Bridge Dimensions: 5'(H) $\times 5^{\prime}(\mathrm{W})$
- Members cannot exceed 3 'x6" $\times 4$ "
- Maximum construction time (45 minutes)
- Penalties applied as weight or time
- Judged on aesthetics, construction economy, stiffness, structural efficiency

Figure 2: Bridge Envelopes, developed using SketchUp

BROADER IMPACTS

Fictional Impacts

- Increased commerce in Kuprica
- Transport of building materials
- Causeway
- Temporary detours

Actual Impacts

- Established and furthered relations with sponsors
- Provided mentorship to future members of the steel bridge team
- Set a precedent for quality of project
- Generated excitement and support for the project
- Represented NAU in a regional competition

TRUSS DESIGN ALTERNATIVES

CAMELBACK

ARCHWITH MID DECKING

UNDER ARCH

BOWSTRING

WARREN

TRUSSWITH ARCH

DECISION MATRIX

Criteria	Arch with Mid Decking	Camelback	Truss with Arch	Warren	Bowstring with Crosses	Under Arch
Strength (25\%)	5	5	5	$\mathbf{5}$	5	5
Lightness (30\%)	3	4	1	$\mathbf{5}$	1	2
Aesthetics (10\%)	5	3	2	$\mathbf{1}$	3	4
Constructability (20\%)	2	4	1	$\mathbf{5}$	3	2
Fabrication (15\%)	4	5	2	$\mathbf{5}$	1	3
Final Score	3.65	4.3	2.25	$\mathbf{4 . 6}$	2.6	3.1

Table I: Decision Matrix

TRUSS ANALYSIS: MEMBER SIZING

- Iterative process used to determine member sizing
- Limit of two member sizes for simplicity
- Selected Members
- Standard $3 / 4$ " Pipe (203 LF)
- Standard 1/2" Pipe (I02 LF)

Figure 3:Various steel cross-sections [2]

TRUSS ANALYSIS: RISA 2D

CONNECTION ANALYSIS: BOLTS

Bolt Sizing

- Bolt size based on:
- Pipe outer diameter
- Gusset plate thickness
- Handling ease
- Bolt size: $5 / 16$ " with $1-1 / 2$ " thread length

Bolt Edge Distances

- Bolt spacing determined per AISC
- Edge spacing:AISC J3.3 (0.75")
- Bolt hole to bolt hole:AISC T.J3.4 (I.0")

Figure 4: Bold edge distances, developed using AutoCAD

CONNECTION ANALYSIS: BEARING CAPACITY

Knowns:

- Max tension: 2,I00 lbs
- Max compression: I,976 lbs
- Plate thickness = 5/16"
- Bolt diameter $=5 / 16 "$

Assumptions:

- Plate strength: 65,000 psi
- Bolt strength: I50,000 psi

Figure 5: Gusset connections [3]

CONNECTION ANALYSIS: BEARING CAPACITY

- Calculated Bearing Stress:
- I0,750 psi
- ϕR_{n} (Connection Strength)
- $\mathrm{R}_{\mathrm{n}}=2.4 \times$ Tension \times Bolt Area
- $\phi=0.75$ (For single bolts)
- $\phi \mathrm{R}_{\mathrm{n}}=\mathrm{II}, 426 \mathrm{psi}$

Figure 6:Welded gusset connections [3]

I00\% DESIGN PLANS - ELEVATION

I00\% DESIGN PLANS - DECKING AND CROSS BRACING

I00\% DESIGN PLANS - CROSS SECTIONS

MID-SPAN CROSS SECTION

END-SPAN CROSS SECTION

I00\% DESIGN PLANS - CONNECTIONS

FABRICATION

Figure 7:Wendy Clark and Cody Elliot Welding [3]
[3] Pictures provided by Steel Bridge Team

Figure 8: Noel Cruz cutting slots [3]

Figure 9: Lauren Stadelmeier cutting members [3]

Figure 10:Wendy Clark cutting gussets [3]

PSWC CONFERENCE COMPETITION - CONSTRUCTION

Figure II: Bridge construction [3]

Figure 13: Bridge construction [3]
[3] Pictures provided by Steel Bridge Team

Figure 12: Bridge construction [3]

Figure 14: Bridge construction final product [3]

PSWC CONFERENCE COMPETITION - LOADING

Figure 15: Lateral load test [3]

Figure 17: Vertical load test [3]

Figure 16: Vertical load test [3]

PSWC CONFERENCE COMPETITION- RESULTS

- Build Time: 42.36 min
- Lateral Deflection: 0 in
- Load Held: 2,I00 lbs
- Penalties
- Dimensional: |
- Tool Drops: I5
- Time penalties: 3

Figure 18: Bridge failure [3]

EXPLANATION OF FAILURE

- Fabrication error led to moment in top chords
- Little deflection prior to failure
- Decking still fully intact and operational
- Cross bracing on top was reduced due to construction time restraints

PROJECT PERSONNEL HOURS

Position	Hours
Project Manger	287
Design Engineer	275
Safety Engineer	311
Scheduling Engineer	298
Intern	300
Total Hours	$\mathbf{1 4 7 I}$

- Design: 200 hours
- Fabrication: 750 hours
- Remaining 52I hours allocated to meetings, documents, etc.

ACKNOWLEDGMENTS

Special thanks to our sponsors, mentees, and everyone else who contributed to the project!
We built this bridge together!

Mentees:
Ashlee Anderson, Sabrina Ballard, Matt Rodgers, Kaitlin Vandaveer

Cody Elliot, Brian Jouflas, Andrew Lamer \& Mingus Union High School students, Gerjen Slim, NAU Mechanical Fabrication Shop

Advisors:
John Tingerthal, Mark Lamer, Charles Schlinger, Thomas Nelson

THANK YOU

QUESTIONS?

